
The Mystery of the Non-Linear
Increase in Cache SER

April 15, 2009

Shubu Mukherjee
Principal Engineer

Director, SPEARS Group

Intel Massachusetts, Inc.

IEEE Fellow

Adjunct Professor at Indian Institute of Technology, Kanpur

Joint work with:

Vinod Ambrose, Arijit Biswas, Leo Chan, Aamer Jaleel, Athanasios
Papathanasiou, Mike Plaster, Charlie Recchia, Norbert Seifert

2

What is a Soft Error?

Neutron or Alpha Particle Strike Changes State
of a Single Bit

0

Error is transient, bit is not permanently damaged.

No known feasible shielding or process technology

eliminates this problem completely

1

3

Cosmic Ray Strikes: Evidence & Reaction
Publicly disclosed examples

• Error logs in large servers, E. Normand, “Single Event Upset at
Ground Level,” IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996.

• Sun Microsystems found cosmic ray strikes on L2 cache with
defective error protection caused Sun’s flagship servers to suddenly
and mysteriously crash, R. Baumann, IRPS Tutorial on SER, 2000.

• Cypress Semiconductor reported in 2004 a single soft error brought a
billion-dollar automotive factory to a halt once a month, Ziegler &
Puchner, “SER – History, Trends, and Challenges,” Cypress, 2004.

Typical server system data corruption targets 1000 years MTBF

• Very hard to achieve this goal in a cost-effective way

• Bossen, 2002 IRPS Workshop Talk

Server processors beginning to protect latches

• 80% of 200k latches protected with parity in 130 nm Fujitsu SPARC

• Uncore latches radiation-hardened in Intel’s 65nm Tukwila processor

4

Evolution of a Product Team’s
Psyche

Shock

“SER is the crabgrass in the lawn of computer design”

Denial

“We will do the SER work two months before tapeout”

Anger

“Our reliability target is too ambitious”

Acceptance

“You can deny physics only for so long”

5

Strike on a bit (e.g., in register file)

Bit

6

Strike on a bit (e.g., in register file)

Bit

Read?

Bit has error

protection?

yes no

benign fault
no error

7

Strike on a bit (e.g., in register file)

Bit

Read?

Bit has error

protection?

yes no

detection &

correction
no no error

benign fault
no error

detection only

affects program

outcome?

affects program

outcome?

8

Strike on a bit (e.g., in register file)

Bit

Read?

Bit has error

protection?

yes no

detection &

correction
no no error

benign fault
no error

detection only

affects program

outcome?

True DUE False DUE

yes no

affects program

outcome?

benign fault
no error

SDC

yes no

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

9

The Mystery:
Cache SER Increases Non-Linearly with Cache Size

Observations in the field showed a higher than expected rate of
both correctable ECC events on the L1 Cache Data and
uncorrectable Parity events on the L1 Cache Tags

• Parity events are the biggest concern since these cause
system halts (DUE)

Intuition based on average behavior indicated cache error rate
increases linearly with cache size (2x increase in SER for a 2x
increase in cache size)

• However, empirical data indicated a 5x to 10x error rate
increase as cache size doubled across a variety of CPUs.

10

The Investigation

The Detectives: Vinod Ambrose, Arijit Biswas, Leo Chan,
Aamer Jaleel, Shubu Mukherjee, Athanasios Papathanasiou,
Mike Plaster, Charlie Recchia, Norbert Seifert

• Suspects

• Clues & Leads

• Re-enacting the Crime

• The Smoking Gun

• Putting it all Together

• Book ‘em Dan-o

• Conclusions

11

Suspects – Potential Causes of the SER
Increase

Electrical Issues

• Load line / power supply issue

• Circuit-level issue related to increased RC on word/bit lines

Design Issues

• Differences in SRAM cell design

• Differences in SRAM cell layout / decap density

Manufacturing Issues

• Process technology effects

Logical Issues

• Workload-based AVF effects

• AVF = probability a bit flip results in user-visible error

12

The Investigation

• Suspects

• Clues & Leads

• Re-enacting the Crime

• The Smoking Gun

• Putting it all Together

• Book ‘em Dan-o

• Conclusions

13

Clues & Leads – The Shakedown

Design sources check on design / layout issues

• SRAM cell design and layout identical between small and large
cache parts

Manufacturing sources check on process issues

• No process tweaks or optical shrinks between small and large
cache parts

Circuit design sources check parasitic RC issues

• SRAM cell SER insulated from parasitic RC effects of longer
bit/word lines

• Parasitic RC on larger cache is not an issue

�Sources eliminate circuit, design, layout & process

14

Clues & Leads –
“Elementary my dear Watson”

“…when you have eliminated the impossible, whatever
remains, however improbable, must be the truth “
–Sir Arthur Conan Doyle

�Logical issues is the only remaining suspect, but how
do we prove that workload-related AVF effects are the
culprit?

Recall: AVF = probability a bit flip results in user-visible error

AVF = probability that a bit is necessary for Architecturally Correct
Execution (ACE)

15

Architecturally Correct Execution (ACE)

Dynamically

Dead

Instruction

ACE path requires only a subset of values to flow correctly
through the program’s data flow graph (and the machine)

Anything else (un-ACE path) can be derated away

Most bits of an un-ACE instruction do not affect program output

Program Input

Program Outputs

16

Mapping ACE & un-ACE Instructions
to the Instruction Queue

Instruction Queue Data Array

Architectural un-ACE Micro-architectural un-ACE

AVF = fraction of cycles a bit contains ACE state
= fraction of ACE bits in IQ in an average cycle

ACE

inst
IdleNOPs Prefetch

Wrong-

Path

Inst

SER & AVF are properties of a bit so
ACEness must be mapped to the bit level

17

T = 3 ACE% = 0/4T = 2 ACE% = 1/4

Computing AVF of a Structure

AVF = fraction of cycles a bit contains ACE state

T = 1 ACE% = 2/4

Average number of ACE bits in a cycleAverage number of ACE bits in a cycle

Total number of bits in the structureTotal number of bits in the structure
=

T = 4 ACE% = 3/4
(2 + 1 + 0 + 3) / 4(2 + 1 + 0 + 3) / 4

44
=

18

The Hypothesis

Similar SER increase seen on specific CPUs for correctable &
uncorrectable cache errors

• Correctable errors come from cache data (ECC-protected)

• Uncorrectable errors come from cache tags/status (parity-
protected)
– Writeback cache Tags are only ACE for dirty cache lines (clean

lines are correctable by invalidate-refetch)

Hypothesis: As the cache size increases, average residency of
cache lines increase

• Average # of ACE bits in a cycle increase as a result

• For tags, only dirty line residency is ACE

One obvious indicator of increased cache residency is the # of
cache misses

19

Why can Cache Misses be an Indicator of
AVF?

� AVF increases can be inversely related to # of cache misses

• # of cache misses as a function of cache size is a property of
the workload’s memory footprint

• As the workload’s data and instruction set fit into the cache,
number of misses will decrease significantly, increasing the
AVF by reducing the unACE time

• This workload-based cache miss phenomenon occurs
independent of underlying architecture

• We observed this phenomenon in our AVF computation work
for address-based structures for the Data TLB and L1 cache
• Observed worst case increases of ~100x

20

Example of Cache Misses Affecting
Cache Data AVF
Main concept:
Time from last ACE Read to next Fill (post-eviction) is unACE

Read A

ACE

Fill A

Read A
Time = 0

2x Cache

No Cache Miss

Access fills a different cache

line (not this one)

Un-ACE

ACE

Fill A

Read A
Time = 0

Access causes Cache Miss

Fills this cache line

1x Cache

Un-ACE

Read A Fill A

ACE Un-ACE

Fill B

May be ACE or Un-ACE

depending on accesses to B

21

Example of Cache Misses Affecting
Cache Tag AVF
Main concept:
Time from first Write to Evict (Write-back) is ACE

End of Program

Write-back data

Un-ACE

Fill

Write
Time = 0

2x Cache

No Cache Miss

Access fills a different cache

line (not this one)

ACE

Fill

Time = 0

Access causes Cache Miss

Fills this cache line and causes

early Write-back of data

1x Cache

ACE Un-ACEACEUn-ACE

Write

22

The Investigation

• Suspects

• Clues & Leads

• Re-enacting the Crime

• The Smoking Gun

• Putting it all Together

• Book ‘em Dan-o

• Conclusions

23

How do we prove our hypothesis?

Choosing the tools and methodology

Proton beam experiment is conducted to re-create the workload
effect

• Target systems are irradiated by accelerated proton beam

• Target workloads are running on target systems while they are irradiated

• Incidence of Detected Unrecoverable Errors (DUE) are counted

Choosing the systems and benchmarks

Systems
(Chose 2 CPUs with the exact same core design but different size cache sizes: 1
MB and 2 MB size L2 caches)

• Target system 1: Processor 1X (1 MB)

• Target system 2: Processor 2x (2 MB)

Benchmarks

• Target workload 1: art (Spec2000)

• Target workload 2: libquantum (Spec2006)

• Target workload 3: swim (Spec2000)

24

3 workloads were specifically chosen to test the cache miss hypothesis

art
Spec2000

Has large change
change in
#misses between
1 and 2 MB

Libquantum
Spec 2006

Swim
Spec2000

Have no change in
#misses between
1 and 2 MB

Workload Cache Miss Profiles

1 MB 2 MB

Expect art to show a large increase in AVF
Expect libquantum & swim may show little to no change in AVF

25

The Investigation

• Suspects

• Clues & Leads

• Re-enacting the Crime

• The Smoking Gun

• Putting it all Together

• Book ‘em Dan-o

• Conclusions

26

The Smoking Gun

• Art & Swim show a ~4x increase in SER
• Libquantum shows negligibe increase in SER

AVF can cause a non-linear increase in SER
All failures are DUE so we focus on Tags

1.2Libquantum

3.87Swim

4.25Art

DUE SER Ratio:
(Processor 2x / Processor 1x)

Benchmark

27

Putting it all Together

Tools of the Trade

• VTUNE™ software used to verify modeled
cache miss behavior
– VTUNE provides a SW interface to HW performance

counters

• AVF simulation studies
– L1 cache AVF studies indicate that up to 100x SER increase

for a 2x cache size increase is possible

– Indicated possible scenarios for non-linear AVF increase

• Cache study simulations
– Provided architecture-independent cache access statistics

for the 3 benchmarks

28

Explaining the Data: Art

1/33Write-backs

1/3Read Misses

1/4Write
Misses

1.56Dirty Reads

1/6MPKI

Ratio:
2X / 1X

Vtune™
SimulationArt showed a ~4X SER

increase from 1X to 2X

From 1X to 2X:
Dirty Reads increased
Misses decreased
Writebacks decreased

These are all indications of
significant increases in the
residency time of dirty lines
as cache size increases

Measurement results for art
show the expected SER increase

29

Explaining the Data: Libquantum & Swim

1.00

1/1.16

1

0.98

1

Swim
Ratio:
2X / 1X

1.01Write-
backs

1/1.14Read
Misses

1Write
Misses

1.06Dirty
Reads

1MPKI

Libquantum
Ratio:
2X / 1X

Vtune™
SimulationSwim showed a ~4X

SER increase from 1X
to 2X

Libquantum showed a
negligible difference in
SER

From 1X to 2X:
Dirty Reads are similar
Misses are similar
Writebacks are similar

So why do we see an SER increase in
Swim but not Libquantum?

Both were expected to show no increase

30

Swim: Strided Cache Access Patterns

Time

Swim has a higher AVF due to strided access pattern

• Strided access patterns “step” through memory

31

Libquantum: Random Cache Access
Patterns

Time

Libquantum has a more random access pattern & no cache
locality (99% miss rate for 1MB & 2MB)

32

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

Read1 Read1

Total Dirty Residency Time0 0

Small Cache Large Cache

T=0

Clean
Dirty

Total Number of Misses1 1

33

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

Read2 Read2

Total Dirty Residency Time0 0

Small Cache Large Cache

T=1

Clean
Dirty

Total Number of Misses2 2

34

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

1* 1*Write1 Write1

Total Dirty Residency Time1 1

Small Cache Large Cache

T=2
* Numbers represent

cumulative dirty cycles

Clean
Dirty

Total Number of Misses2 2

35

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

2* 2*

Read3 Read3

Total Dirty Residency Time2 2

Small Cache Large Cache

T=3

Clean
Dirty

Total Number of Misses3 3

* Numbers represent
cumulative dirty cycles

36

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

3* 3*

Read4 Read4

Total Dirty Residency Time3 3

Small Cache Large Cache

T=4

Clean
Dirty

Total Number of Misses4 4

* Numbers represent
cumulative dirty cycles

37

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

4*
1*

4*
1*Write2 Write2

Total Dirty Residency Time5 5

Small Cache Large Cache

T=5

Clean
Dirty

Total Number of Misses4 4

* Numbers represent
cumulative dirty cycles

38

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

4*
2*

5*
2*

Read5

Read5

Total Dirty Residency Time6 7

Small Cache Large Cache

T=6

Read5 wraps around
and evicts address 1

Clean
Dirty

Total Number of Misses5 5

* Numbers represent
cumulative dirty cycles

39

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

4*
2*

6*
3*Read6

Read6

Total Dirty Residency Time6 9

Small Cache Large Cache

T=7

Read6 wraps around
and evicts address 2

Clean
Dirty

Total Number of Misses6 6

* Numbers represent
cumulative dirty cycles

40

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

4*
2*
1*

7*
4*
1*Write3 Write3

Total Dirty Residency Time7 12

Small Cache Large Cache

T=8

Clean
Dirty

Total Number of Misses6 6

* Numbers represent
cumulative dirty cycles

41

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

4*
2*
1*

8*
5*
2*Read7

Read7

Total Dirty Residency Time7 15

Small Cache Large Cache

T=9

Read7 wraps around
and evicts address 3

Clean
Dirty

Total Number of Misses7 7

* Numbers represent
cumulative dirty cycles

42

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

4*
2*
1*

9*
6*
3*

Read8

Read8

Total Dirty Residency Time7 18

Small Cache Large Cache

T=10

Read8 wraps around
and evicts address 4

Clean
Dirty

Total Number of Misses8 8

* Numbers represent
cumulative dirty cycles

43

Strided Cache Access Example

Strided cache access pattern can increase dirty residency times
with cache size while keeping event counts and ratios the same

Assume: 2 reads for every write, strided reads and writes

4*
2*

1*
1*

10*
7*

1*
4*

Write4 Write4

Total Dirty Residency Time8 22

Small Cache Large Cache

T=11

Clean
Dirty

Total Number of Misses10 9

* Numbers represent
cumulative dirty cycles

44

Cache Stride Example

Cache stride pattern caused a ~3x increase
in dirty residency

• No dirty reads in either case

• Same # of writebacks since all dirty lines will be
written back at the end of the program

• # of misses are roughly the same

• Different Read/Write ratios and strides will affect
the rate of SER increase

– Swim has a 4:1 ratio of loads:stores

45

The Investigation

• Suspects

• Clues & Leads

• Re-enacting the Crime

• The Smoking Gun

• Putting it all Together

• Book ‘em Dan-o

• Conclusions

46

Book ‘em Dan-o

1.23.874.85MPTF

1/33

1/3

1/4

1.56

1/6

Art
Ratio:
2X / 1X

1.01

1/1.14

1

1.06

1

Libquantum
Ratio:
2X / 1X

1.00

1/1.16

1

0.98

1

Swim
Ratio:
2X / 1X

Write-backs

Read Misses

Write Misses

Dirty Reads

MPKI

Vtune™
Simulation
Proton Beam

Art sees a ~4x increase in SER due to dirty residency time
increases brought on by lower miss rates

Swim sees a ~4x increase in SER due to dirty residency time
increases brought on by a strided access pattern

47

Conclusions

SER can scale non-linearly due to AVF

• Driven by workload-based cache behavior

• Tag AVF driven by residency time of dirty lines

– Decreasing miss rates (Art)

– Strided access patterns (Swim)

What can we do to account for this behavior?

• Recognize and accept that cache AVF behavior is based on
residency times of valid lines (dirty lines for tag AVF)

• Provide recovery (correction) of cache errors (e.g. ECC)
thereby reducing cache tag DUE to zero

• Increased SER seen on 2X processor was still within spec.
Rather, the SER seen on the 1X processor was significantly
under spec.

