

Microwave Device Air **Reliability Characterization** Land -The Mechanics of Life Test Sea **Execution and Analysis** Space Cyberspace Innovation. In all domains. Michael Benedek **RF** Components Reliability Lead 3-10-2009

Copyright © 2009 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Microwave Device Reliability Characterization -The Mechanics of Life Test Execution and Analysis

Co-Authors: Nicholas Brunelle*, Anna Hooven, Bradley Mikesell and Philip Phalon* Jr, Kurt Smith**

* Raytheon RF Components Reliability Team

** Raytheon RF Components IR&D Team

Reliability Lab Charter

- Perform All Due Diligence Testing to Establish and Maintain the MMIC Fab Process Reliability to ensure 'NoDoubt' Mission Assurance
- Provide Reliability Expertise Within RFC, IDS and Company Wide
- Anticipate Test Capability and Capacity Needs to Enable Nimble Response to Programs' Needs
- Search for New Paradigms in Testing and Reliability Benchmarks Industry Wide
- Implement Lean Methods and Automation to Optimize Quantity and Enhance the Quality of Test Execution and Data Analysis

Reliability Lab Test Capabilities

- Life Testing:
- Process Reliability Monitoring
- DC Biased Temperature Accelerated Life Test
- RF Operational Life Test (S & X-Band)
- RF Temperature Accelerated Life Test (X-Band)
- Pulsed DC Electromigration (DC TALT)
- Current Density Testing (DC TALT)
- Characterization:
- Capacitor Time Dependent Dielectric Breakdown Testing
- LabVIEW Based Parametric Characterization
- Resistor TCR Characterization
- Light Emission Microscopy
- Liquid Crystal Failure Analysis

What Affects Reliability?

- Technical or lay, we all know that the reliability or longevity of "things" is driven by stress
- The list of life reducing stresses include: temperature, temperature cycling, humidity, voltage/electric field, current density, mechanical stress, thermo-mechanical stress cycling, radiation etc
- The dominating stresses depend on the application environment.
- Most of us would instinctively recognize Temperature as a common stress for many "things".

Temperature is a common stress driver of reliability

The Focus of Today's Presentation

- Our "things" of interest are microwave devices made of compound semiconductor materials (GaAs, GaN etc)
- Temperature and voltage/electric field are the important stresses in the application of microwave devices
- In the space/defense environment many of the others are mitigated by the application environment.
- This presentation will focus on temperature activated degradation. The reliability metrics from the statistical formalism will be introduced and the procedures to obtain them will be detailed

Main Theme: Thermally activated reliability metrics

Raytheon

Integrated Defense Systems

Elements of the Statistical Formalism

- The Lognormal Lifetime Distribution
 - Failures are distributed 'normally' when plotted on log time scale
- The Cumulative Failure Fraction Plot
 - A linear plot can be taken as evidence for lognormal lifetime distribution
- The Arrhenius Reaction Rate Model t=to*e^{Ea/kT}
 - The Arrhenius acceleration relationship is then
 - $ML1/ML2 = e^{Ea/kT1}/e^{Ea/kT2}$
- The Reliability Metrics from above are:
 - Median Life (ML) or MMTF
 - Sigma (σ) the dispersion standard deviation of the log of lifetimes
 - Activation Energy

The Metrics: Median Life, Sigma and Activation Energy

The Lognormal Failures Distribution

Lognormal Failure Distribution 0.6 120 MedianLife 0.5 100 Failure Distribution [arbitrary] Cumulative Failures [%] 0.4 80 0.3 60 15 yr Mission 0.2 40 σ=1 0.1 20 0.0 Ω 1.E+2 1.E+3 1.E+4 1.E+6 1.E+7 1.E+8 1.E+9 1.E+5 Time [Hr]

Distribution is 'normal' when plotted on log time scale

Trade Off Between ML and σ

Failure Rate in FITs through mission time is negligible

FIT is a failure unit And it is equivalent with 1 failure/10⁹ hr

To maintain 'Same' Reliability at lower ML, σ has to be smaller

03/10/2009 Page 9

The Lognormal Failures Distribution

•

Lognormal Failure Distribution 120 0.6 Median 0.5 100 Failure Distribution [arbitrary] Life **Cumulative Failures [%]** 80 0.4 0.3 60 15 yr 0.2 40 Mission 0.1 20 0.0 Ω 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7 1.E+8 1.E+9 Time [Hr]

Note Margin Between Distribution Tail and Mission Time

03/10/2009 Page 10

The Cumulative Failure Fraction Plot

Note on the X scale both the Probability and Score scales are shown

The Plot is linear Ln(TTF) = $\sigma^* z$ + Ln(ML)

The exponential curve fit in Excel returns the form

TTF = ML* $e^{\sigma^* z}$

The extraction of ML and σ is direct

A linear plot is taken as evidence for lognormal lifetime distribution

The Arrhenius Reaction Rate Model

ML=C * e^{Ea/kT} Or 1000/T= A*In(ML)+C

The Plot is a straight line using these scales

The logarithmic curve fit in Excel returns this form and from the slope A the Activation Energy

Ea=1000k/A=0.0862/A

k is Boltzman's constant in eV^*K^{-1}

The Ability to Thermally Accelerate Aging is Key to the Process

Life Test Scope

- Life Tests at minimum 3 temperatures are required to establish a credible trend
- Tch for the Life Tests is determined from self heating due to DC operating power dissipation and base plate temperature setting
- Test Vehicles are 12 Schottky Gate Field Effect Transistors per temperature group
- 20% Decrease in Drain Current is the Failure Criterion
- Drain Current is a key performance parameter and it is correlated with RF Power output capability

FET Test Vehicles and -20% ΔId Failure Criterion

Life Test Data Analysis

Drain Current aging at Tch=329°C - Linear trend plot

Times to Failure are indicated by arrows on the Time Scale

Life Test Data Analysis

Drain Current aging at Tch=329°C - Logarithmic trend plot

Logarithmic trend plot is a better visual indicator of ML

Life Test Data Analysis

- The Time-to-Fail values are tabulated and ranked
- For each failure the cumulative failed fraction, Q, is calculated using the median ranking formula:
 Q=(F-0.3)/(N+0.4) F is the number of failed parts; N is the number of parts in the test
- Q is converted to the z score using NORMSINV function in Excel

The resulting z-score and TTF data is plotted using the Cumulative Failure Fraction Plot

F cum # failures	Q [fraction] (F-0.3)/(N+0.4)	Z score	TTF [hr] sorted
1	0.05645	-1.58528	450
2	0.13710	-1.09346	570
3	0.21774	-0.77984	670
4	0.29839	-0.52904	700
5	0.37903	-0.30802	950
6	0.45968	-0.10125	1100
7	0.54032	0.101246	1174
8	0.62097	0.308024	1200
9	0.70161	0.529045	1200
10	0.78226	0.779842	1700
11	0.86290	1.093456	1900
12	0.94355	1.585278	2100

The Id trend plot is reduced to the TTF and Z-score data array

The Cumulative Failure Plot: Tch=329°C

The Cumulative Failure Plot Provides ML and σ Directly

All 3 Cumulative Failure Plots

The Cumulative Failure Plot Provides ML and σ Directly

Raytheon

The Arrhenius Plot for the 3 Life Tests

Tch is converted to 1000/Tch in [°K⁻¹]
Note negative sign forces Temperature increase bottom to top

Tch	ML	1000/Tch
[°C]	[hr]	[°K ⁻¹]
345	365	-1.618
329	1031	-1.661
308	4053	-1.721

 ML and 1000/Tch are plotted on the Arrhenius Coordinates

■ Ea=0.0862/A

■ Ea=2.01eV

The Arrhenius Plot Provides Ea Directly

Reliability Metrics Summary

The Reliability Metrics based on all 3 temperature groups used in this example are

Tch[°c]	ML[hr]	σ	Ea[eV]
345	365	0.57	
329	1031	0.52	2.01
308	4053	0.35	

Projections are based on the Arrhenius relationship $ML1/ML2 = e^{Ea/kT1}/e^{Ea/kT2}$

Extrapolate Time							
			Unknown				
Ea (eV)	t1 [hr]	T1 [°C]	t2=?? [hr]	T2 [°C]			
2.01	4.05E+03	308	1.313E+10	150			
1.50	1.03E+03	329	2.116E+08	150			

The 2.01eV Arrhenius Line Projects ML= 1.3E10 at a Mission Tch=150°C The Conservative 1.5eV Arrhenius Line Projects ML= 2.1E8 at Tch=150°C

Reliability Metrics Summary

Normalized Failure Rate Plot is Used to Validate Our Extraction and Calculation Protocols

The Equipment/Set Up

The Equipment Uses a Servo Feedback Loop Which Adjusts the Gate Voltage to Keep Constant Drain Current

The 2nd Key Stress in the application of
microwave devices - Voltage/Electric fieldRaytheon
Integrated Defense Systems

Stable Po during RF Life Test

RF Life Test Equipment

RF Operational Life Tests Are Used to Mitigate High Field Effects Also Known as Hot Electron Effect

References

- 1. F.H. Reynolds, "Thermally Accelerated Aging Of Semiconductor Components", Proceedings of the IEEE, Volume 62, No2, Feb., 1974
- 2. D.S. Peck and C.H. Zierdt, Jr, "The Reliability of Semiconductor Devices in the Bell System", Proceedings of the IEEE, Volume 62, No2, Feb., 1974
- 3. P.A. Tobias and D.C. Trindade, "Applied Reliability", Van Nostrand Reinhold Company, Copyright 1986
- 4. W. B. Nelson, Accelerated Testing Statistical Models, Test Plans, and Data Analysis", John Wiley & Sons, Inc, Copyright 1990, 2004
- 5. L. R. Goldthwaite, "Failure Rate Study for the Lognormal Lifetime Model", Proceedings of the 7th Symposium on Reliability and Quality Control, 1961 p. 208-213
- 6. B.S. Hewitt and M. Benedek, "Decipher The Mystery of Reliability Statistics, MicroWaves, October, 1978