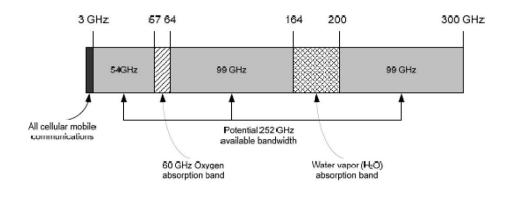
Beyond 4G: Millimeter Wave Picocellular Wireless Networks

Sundeep Rangan, NYU-Poly

Joint work with Ted Rappaport, Elza Erkip, Mustafa Riza Akdeniz, Yuanpeng Liu

> Sept 21, 2013 NJ ACS, Hoboken, J

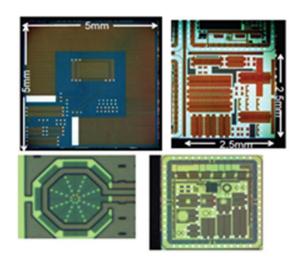
Outline

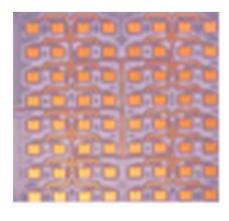

Millimeter Wave: Potentials and Challenges

- 28 GHz Measurements in New York City
- Capacity Estimation
- Multiple Access with Limited Streams
- Research Directions

mmW: The New Frontier for Cellular

- Potential 1000x increase over current cellular:
 - Massive increase in bandwidth
 - Near term opportunities in LMDS and E-Bands
 - Up to 200x total over long-time
 - Spatial degrees of freedom from large antenna arrays




From Khan, Pi "Millimeter Wave Mobile Broadband: Unleashing 3-300 GHz spectrum," 2011

Very High Dimensional Arrays

Test 60 GHz circuits fabricated in Rappaport's lab at NYU wireless

Commercial 64 antenna element array

- 64+ antennas in a single chip
- Standard CMOS
- Beamforming
- Spatial multiplexing
- NYU wireless has unique facilities for fabrication and test

Key Challenges: Range

- Friis' Law: $\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda^2}{4\pi r^2}\right)$
 - Free-space path loss $\propto \lambda^{-2}$
 - Increase in 20 dB moving from 3 to 30 GHz
- Shadowing: Significant transmission losses possible:
 - Mortar, brick, concrete > 150 dB
 - Human body: Up to 35 dB
- NLOS propagation relies on reflections

Other Challenges

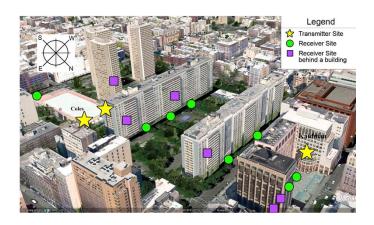
- Device power consumption
 - High bandwidths, large numbers of antennas
 - Low PA efficiency in CMOS (often < 10%)
- Intermittent connectivity
 - Loss of LOS
- Higher Doppler

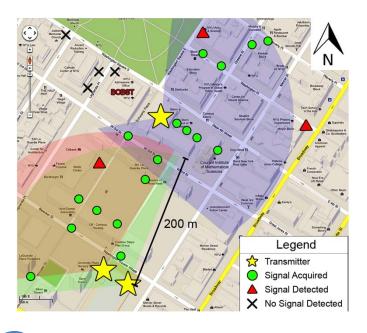
mmW Work at NYU Wireless

- Faculty: Ted Rappaport, Sundeep Rangan, Elza Erkip
- 10+ students
- NSF NeTS: \$1.2M
- NSF AIR grant: Accelerating cellular technologies
 - \$800k NSF grant + \$1.2M industry match
 - Targeted to short-term commercial research realization
- Intel Beyond 4G Award (with USC and Princeton)
- Industry partners:
 - Samsung, InterDigital, National Instruments, Verizon, Intel, ...

Outline

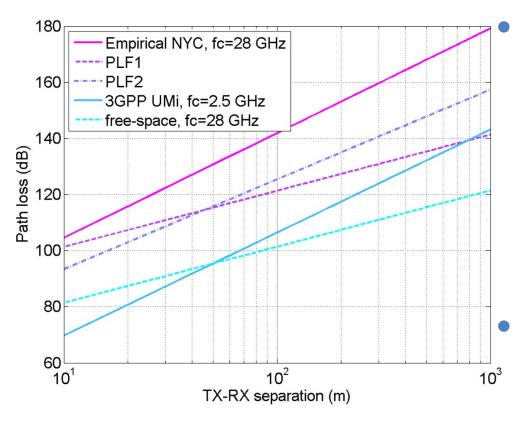
• Millimeter Wave: Potentials and Challenges




28 GHz Measurements in New York City

- Capacity Estimation
- Multiple Access with Limited Streams
- Research Directions

NYC 28 GHz Measurements

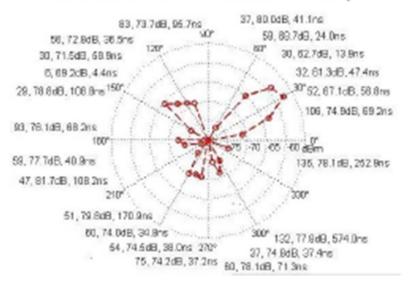


- Focus on urban canyon environment
 - Likely initial use case
 - Mostly NLOS
 - "Worst-case" setting
- Measurements mimic microcell type deployment:
 - Rooftops 2-5 stories to street-level
- Distances up to 200m

All images here from Rappaport's measurements:

Azar et al, "28 GHz Propagation Measurements for Outdoor Cellular Communications Using Steerable Beam Antennas in New York City," ICC 2013

Path Loss Comparison


Measured NLOS path loss in NYC

- > 40 dB over free-space
- > 40 dB worse than 3GPP urban micro model for fc=2.5 GHz
- > 20 dB over prev. studies
- But, will still see large capacity gain possible

Angular Spread

Power Received at RX on corner of Greene and Broadway

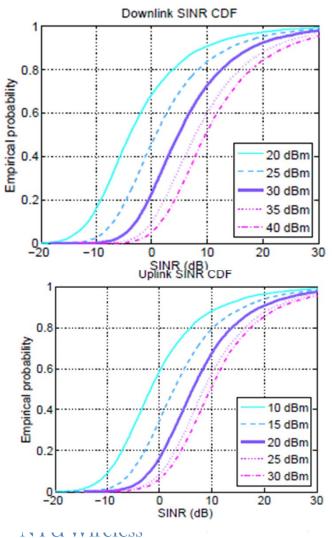
- Observed significant angular spread:
 - Average 3 clusters
 - 7 degree beamwidth each
- Significant NLOS reflections
- Delay spread mostly < 400ns

Future Measurements

- Micro vs. picocellular deployments:
 - Transmitters placed lower heights, below rooftops
 - Lower range but greater LOS links
- Higher frequencies:
 - 72 GHz
- Indoor-outdoor propagation

Outline

- Millimeter Wave: Potentials and Challenges
- 28 GHz Measurements in New York City
- Capacity Estimation
 - Multiple Access with Limited Streams
 - Research Directions



Simulation Parameters

Parameter	Value	Remarks
BS layout	Hex, 3 cells per site, ISD = 200m	Similar to 3GPP Urban Micro (UMi) model (36.814)
UE layout	Uniform, 10 UEs / cell	
Bandwidth	1 GHz	
Duplex	TDD	To support beamforming
Carrier	28 GHz	
Noise figure	7 dB (UE), 5 dB (BS)	
TX power	20 dBm (UE), 30 dBm (BS)	Supportable with 8% PA efficiency
Scheduling	Proportional fair, full buffer traffic	Static simulation corresponds to equal bandwidth
Antenna	8x8 2D uniform array at UE and BS)	Long-term beamforming. Single stream, no SDMA

NYU

SNR Distribution

• SNR distribution similar to current macrocellular deployment

- But, depends on:
 - Power
 - Beamforming

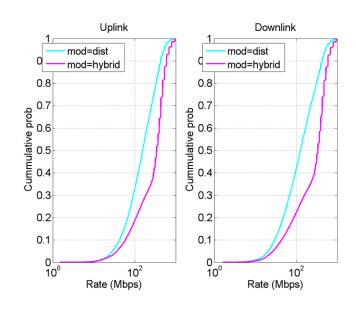
15

Comparison to Current LTE

- Initial results show significant gain over LTE
 - Further gains with spatial mux, subband scheduling and wider bandwidths

System antenna	Duplex BW	fc (GHz)	Cell throughput (Mbps/cell)		Cell edge rate (Mbps/user, 5%)	
			DL	UL	DL	UL
mmW (64x64)	1 GHz TDD	28	780	850	8.22	11.3
Current LTE (2x2 DL, 2x4 UL)	20+20 MHz FDD	2.5	53.8	47.2	1.80	1.94

Parameters from previous slide with 50-50 UL/DL split & 20% overhead


~ 15x gain

~ 5x gain

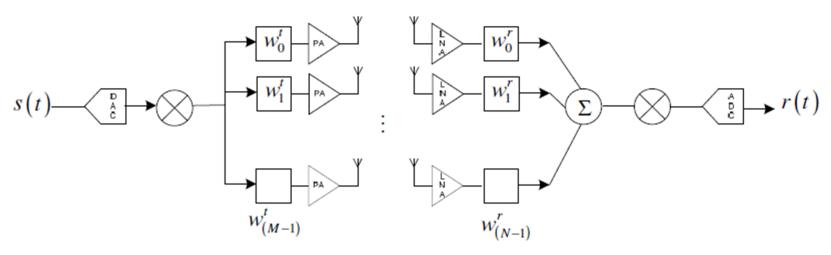
LTE capacity estimates from 36.814

Alternate Deployment Models

- Current study considered microcell type deployment
 - Rooftop aimed at large coverage
 - Mostly NLOS and power-limited
- Alternate deployment:
 - Street-level, LOS links
 - Much greater capacity in shorter range
- Possible HetNet

Rate CDF under hybrid model

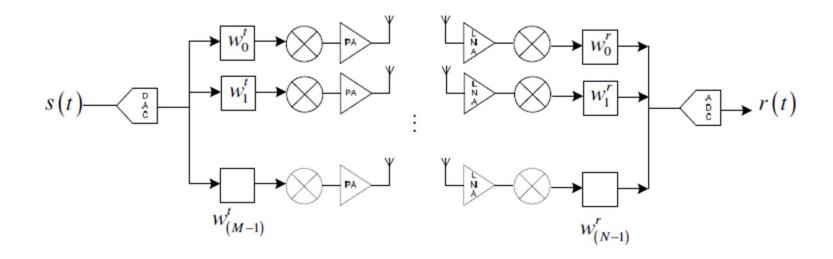
LOS/NLOS probability from 36.814 relay case



Outline

- Millimeter Wave: Potentials and Challenges
- 28 GHz Measurements in New York City
- Capacity Estimation
- Multiple Access with Limited Streams
 - Research Directions

RF Beamforming



From Khan, Pi "Millimeter Wave Mobile Broadband: Unleashing 3-300 GHz spectrum," 2011

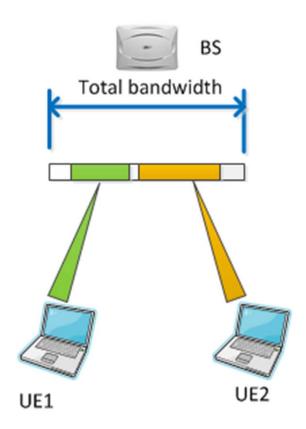
- Low power consumption
 - Single mixer and ADC / DAC per digital stream
 - RF phase shifting may lack accuracy

BB Analog Beamforming

- Intermediate power consumption
 - One mixer per antenna and stream
 - One DAC / ADC + BB amp per stream
 - Lower mixer linearity requirement

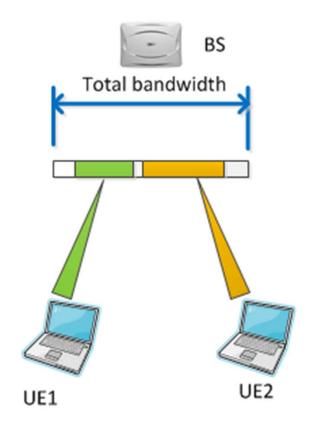
Component Power Consumption

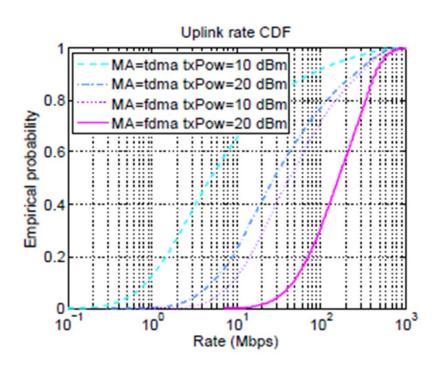
Component	Power (mW)	RF BF	Analog BF	Remarks
PA	*	N	N	Typ efficiency = 8%
LNA	20	N	N	
RF shifter	23	KN	0	
Mixer	19	K	N	
LO buffer	5	K	2N-1	
Filter	14	K	N	
Phase rotator	1.4	0	KN	
BB amp	5	K	K	
ADC	255	K	K	6 bit, 2 Gsps


K=# streams, N=#antennas

21

Subband Scheduling


- Reduce UE power consumption
 - A/D power scales linearly with bandwidth
- Reduced peak rate to individual UE
- But, no loss in total capacity in DL
- Improved capacity in UL
- Enables smaller MAC transport blocks.

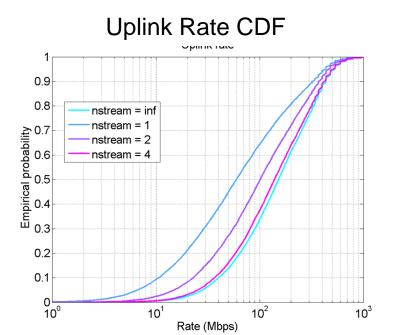

Beamforming Optimization

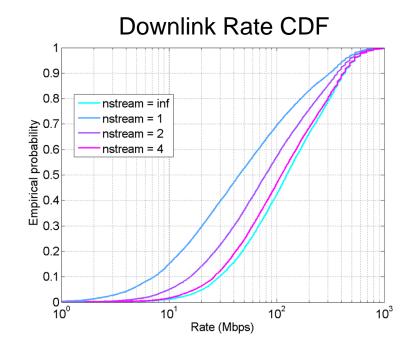
- Each UE needs to only support one digital stream
- But, BS ideally uses different beams to each UE
- What is possible with limited number of digital streams?

Multiple Access & Other Benefits

- Power saving also possible via TDMA and DRX
- Very inefficient in powerlimited regime
 - 10x decrease in UL
- Reduced MAC Transport block
 - Ex: 125 us TTI x 1 GHz x 2
 bps/Hz = 250,000 DoF

Beamforming Optimization


- Parameters
 - N = # antennas, K = # streams at BS
 - $W = N \times K$ unitary beamforming matrix
 - $\gamma_i = Tr(W^*Q_iW) = \text{long-term SNR of UE } i$
- Utility optimization:


$$\max_{W} \sum_{i} U_{i}(\gamma_{i})$$

- Non-convex, but can perform local optimization easily
 - Weighted power algorithm.

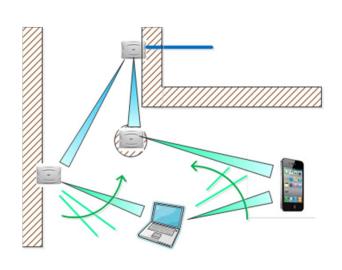
Optimization Results

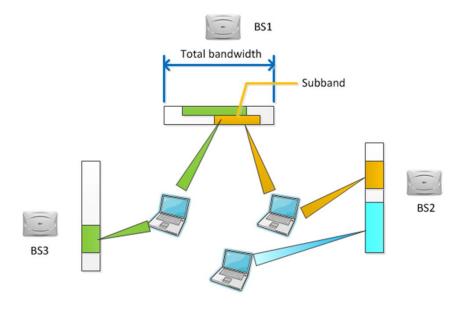
• 4 streams is adequate with 10 UEs per cell

Outline

- Millimeter Wave: Potentials and Challenges
- 28 GHz Measurements in New York City
- Capacity Estimation
- Multiple Access with Limited Streams

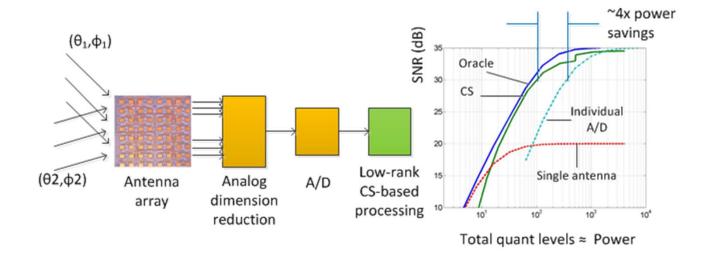
Research Directions




Summary

- Significant potential for capacity increase in mmW
 - 1GHzTDD mmW offers 15x over 20+20 MHz LTE FDD
 - But, throughput gains are not uniform
- Systems appears power-limited:
 - Heavy dependence on dense cells & beamforming
 - Strong difference to current cellular systems
 - Traditional methods for increasing capacity may be limited
- Capacity tied closely with front-end capabilities
 - Number of digital streams, beamforming, ...

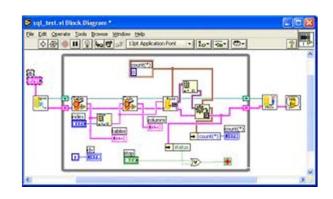
Rethinking LTE for mmW



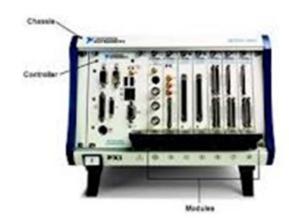
Directional relaying Mesh networks Coordinated multi-antenna scheduling with subband allocations

- 5th Generation cellular
- Many innovative technologies

Low-Power Acquisition via Compressed Sensing



- Reduce power through smart A/D conversion
- Enable high spatial degrees of freedom and wide bandwidths



National Instruments Testbed

- Powerful programmable platform
 - Uniquely capable of implementing wideband cellular standards
- NI providing
 - 60 GHz front-end based, possibly with steerable array
 - VM to place Linux for upper-layer software

NI Chassis

References

- Khan, Pi, "Millimeter-wave Mobile Broadband (MMB): Unleashing 3-300GHz Spectrum," Feb 2011, http://www.ieee-wcnc.org/2011/tut/t1.pdf
- Pietraski, Britz, Roy, Pragada, Charlton, "Millimeter wave and terahertz communications: Feasibility and challenges," ZTE Communications, vol. 10, no. 4, pp. 3–12, Dec. 2012.
- Akdeniz, Liu, Rangan, Erkip, "Millimeter Wave Picocellular System Evaluation for Urban Deployments", Apr 2013, http://arxiv.org/abs/1304.3963
- Azar et al, "28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City," to appear ICC 2013
- H. Zhao et al "28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City," ICC 2013
- Samimi, et al "28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City," VTC 2013.