Ongoing

Deep Learning With Applications

Room: Room 306, Bldg: Becton Building , FDU Metropolitan Campus, 960 River Road, Teaneck, New Jersey, United States, 07666

September 21 through November 2, 2024. Six Saturdays 1:30-4:30pm (9/21, 9/28, 10/5, 10/19, 10/26, 11/2). The IEEE North Jersey Section Communications Society Chapter is offering a course entitled "DEEP LEARNING WITH APPLICATIONS". Deep learning is a transformative field within artificial intelligence and machine learning that has revolutionized our ability to solve complex problems in various domains, including computer vision, natural language processing, and reinforcement learning. This hands-on course on deep learning is designed to provide students with an understanding how these amazing successes are made possible by drawing inspiration from the way that brains, both human and otherwise, operate. Students will gain a comprehensive foundation in the principles, techniques, and applications of deep neural networks. Learning how to solve real data-set based applications will teach students how to really apply deep learning with Python programming software. Participants will be asked to design and train deep neural networks to perform tasks such as image classification using commonly available data sets. However, participants are encouraged to apply the techniques from this course to other data sets according to their interests. Discuss with the instructor in order to propose your own project. More importantly, this will set the foundations for understanding and developing Generative AI applications. The IEEE North Jersey Section's Communications Society Chapter can arrange for providing IEEE CEUs - Continuing Education Units (for a $5 charge) upon completion of the course. Course prices: $75 for Undergrad/Grad/Life/ComSoc members, $100 for IEEE members, $150 for non-IEEE members Co-sponsored by: Education Committee Speaker(s): Thomas Long, Agenda: 1. Introduction to Neural Networks: Explore the fundamental concepts of artificial neural networks, backpropagation, activation functions, and gradient descent, laying the groundwork for deep learning understanding. 2. Introduction to PyTorch: Learn how to implement and train neural networks using PyTorch one of the most popular deep learning frameworks. Understand tensors. 3. Computer Vision Applications: Apply deep learning to computer vision problems, including image classification and object detection using Convolutional Neural Networks (CNNs) 4. Training and Optimizing Deep Neural Networks: Study techniques for training deep neural networks effectively, including optimization algorithms, weight initialization, regularization, and dropout. 5. Sequential Data Analysis: Explore how deep learning is used to analyze sequential data using Recurrent Neural Networks (RNNs). In particular, explore how neural networks are used in Natural Language Processing (NLP) tasks such as sentiment analysis and machine translation. 6. Generative AI: Overview of generative ai techniques that leverage the patterns present in a dataset to generate new content. Applications of generative ai include large language models such as ChatGPT and image generation models such as Midjourney and Stable Diffusion. This course assumes a basic understanding of machine learning concepts and programming skills in Python. Familiarity with linear algebra and calculus will be beneficial, but not mandatory. Statistical software (Python, Scikit-learn) and Deep Learning Frameworks (Pytorch, TensorFlow) will be used throughout the course for the exploration of different learning algorithms and for the creation of appropriate graphics for analysis. Learning objectives: Subjects covered include these and other deep learning related materials: artificial neural networks, training deep neural networks, RNN, CNN, image recognition, natural language processing, GANs, data processing techniques, and NN architectures. The course is intended to be subdivided into 3-hour sessions. Each lecture is further subdivided into lecture, guided and independent project based exercises to build experience with hands-on techniques. This course will be held at FDU - Teaneck, NJ campus. Checks should NOT be mailed to this address. Can bring checks in person or use online payments at registration. Email the organizer for any questions about course, registration, or other issues. Technical Requirements: Students will need access to the Python programming language. In addition to a standard Python installation, most programming exercises will use the package Scikit-learn. Basic programming skills and some familiarity with the Python language are assummed. Students are expected to be able to bring a laptop onto which most of these libraries can be pre-installed using python's pip install. Most of the coding in this course will use the Python programming language. Coding examples and labs will be distributed in the form of Juypter notebooks. In addition to standard Python, most programming exercises will use either the PyTorch or TensorFlow libraries. Books and other resources will be referenced. Room: Room 306, Bldg: Becton Building , FDU Metropolitan Campus, 960 River Road, Teaneck, New Jersey, United States, 07666

Towards the 100% Clean Energy by 2035

Room: 202, Bldg: ECEC Building, 141-159 Warren St, Newark, New Jersey, United States, 07102, Virtual: https://events.vtools.ieee.org/m/435750

During this session, we will discuss the following: - The major difference between the 100% clean and renewable energy systems. - Solar performance in the East Coast. - The 2,000 MW energy storage goal by 2030 - The NJ commissioner energy master plan - The grid transformation/digitalization - Cybersecurity challenges - Electrification impact - Artificial Intelligence (AI): liability or asset Co-sponsored by: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark , New Jersey, United States Speaker(s): Ahmed Mousa, Utility of the Future Manager, Room: 202, Bldg: ECEC Building, 141-159 Warren St, Newark, New Jersey, United States, 07102, Virtual: https://events.vtools.ieee.org/m/435750

IEEE North Jersey Section EXCOM – Meeting 6:30 PM

Bldg: Center for Environmental and Life Sciences, Room 120, Red Hawk Deck, 1 Normal Ave, Montclair, New Jersey, United States, 07043, Virtual: https://events.vtools.ieee.org/m/434118

The IEEE North Jersey Section's Executive Committee (EXCOM) monthly meeting will be held hybridly. The EXCOM meeting starts at 6:30 pm EST and typically ends at 8:30 pm. The meeting is meant to discuss and coordinate the activities of the Section and its Chapters and Groups, as well as new initiatives. Everyone is welcome to attend this meeting. Please register in advance for this meeting using vTools (Please make a note if you join the meeting remotely) You can change/cancel the registration if your plans change. For more information, please contact our IEEE North Jersey Section Chair Hong Zhao ([email protected]) , or Secretary, Adriaan van Wijngaarden, ([email protected]). To join remotely by the following Zoom link: https://fdu.zoom.us/j/96929941026 Meeting ID: 969 2994 1026 Note: If you are unable to join the meeting, please send your chapter activity report to the section chair at [email protected] Agenda: 06:30 pm - 06:45 pm Networking 06:45 pm - 08:30 pm IEEE North Jersey Section Executive Committee Meeting The meeting agenda typically includes news related to the IEEE and the IEEE North Jersey Section, Secretary and Treasurer reports, Chapter and Affinity Group reports, Committee reports, and reports by various Chairs and Representatives, Committee Chairs, and planning, and new initiatives. Bldg: Center for Environmental and Life Sciences, Room 120, Red Hawk Deck, 1 Normal Ave, Montclair, New Jersey, United States, 07043, Virtual: https://events.vtools.ieee.org/m/434118